NL2SQL For Chatbot with Semantic Parsing Using Rule-Based Methods

Adi Kurniawan, Abdiansah Abdiansah, Alvi Syahrini Utami

Abstract

Structured Query Language (SQL) is a command language that allows users to access database information. Ordinary people generally donot know how to make queries with SQL to a database. The chatbot is acomputer program developed to interact with its users via text or voice. In this study, chatbots were developed to help and facilitate users intheNatural Language to Structured Query Language (NL2SQL) process tosearch for information in an Academic Information Systemdatabasewith semantic parsing using a rule-based method that accepts input inthe form of interrogative sentences or order. In the Natural Language toStructured Query Language (NL2SQL) process several problems arise, namely input problems with unique parameters for the knowledge base, and slow searching or translation processes, which make Natural Language to Structured Query Language (NL2SQL) inef icient, problems This problem will be solved using a semantic parsingapproach using a rule-based method that is proven to be ef icient insolving issues such as the Natural Language to Structured QueryLanguage (NL2SQL) process. The results showed that the semanticparsing approach using the rule-based method succeeded in obtainingan accuracy rate of 96.72% using 122 test data in the formof questionsentences or command data about the Academic Information Systemof the Department of Informatics Engineering, Sriwijaya University inIndonesian, and an average execution time of 50.68 milliseconds. seconds or 0.05 seconds.

Full Text:

PDF

References

G. K. Vamsi, A. Rasool, and G. Hajela, “Chatbot A Deep Neural Network Based Human to MachineConversation Model,” IEEE, 2020.

G. Katsogiannis-meimarakis and G. Koutrika, “Deep Learning Approaches for Text-to-SQLSystems,” open Proc., pp. 710–713, 2021.

F. Abdulwahid and A. Finandhita, “Coreference Implementation On Indonesian Language toStructured Query Language ( SQL ) Convertion on Changing The Structure of The Table,” Tek. Inform. –Universitas Komput. Indones., 2019.

R. Agustina, “Akses Basis Data Melalui Perintah Suara Berbahasa Indonesia MenggunakanAlgoritma Cosine Similarity,” Univ. Sumatera Utara, 2018.

F. Fu’adi, “Implementasi Perintah Menampilkan Data Menggunakan Bahasa Indonesia DenganNatural Language Processing,” Proceeding of KMICE’08, no. 021, pp. 1–8, 2015.

Eka Yuniar and Heri Purnomo, “Implementasi Chatbot ‘Alitta’ Asisten Virtual Dari Balittas Sebagai

Pusat Informasi Di Balittas,” Antivirus J. Ilm. Tek. Inform., vol. 13, no. 1, pp. 24–35, 2019, doi:

35457/antivirus.v13i1.714.

J. Huang, Y. Wang, Y. Wang, Y. Dong, and Y. Xiao, “Relation Aware Semi-autoregressive SemanticParsing for NL2SQL,” arXiv, 2021, [Online]. Available: http://arxiv.org/abs/2108.00804.

T. Guo and H. Gao, “Content Enhanced BERT-based Text-to-SQL Generation,” arXiv, pp. 2–7, 2019, [Online]. Available: http://arxiv.org/abs/1910.07179.

I. Iswandi, I. S. Suwardi, and N. U. Maulidevi, “Penelitian Awal : Otomatisasi Interpretasi DataAkuntansi Berbasis Natural Language Processing,” J. Sist. Inf., vol. 5, no. 2, pp. 622–628, 2013.

R. Alamanda, C. Suhery, Y. Brianorman, and J. S. Komputer, “Aplikasi Pendeteksi Plagiat TerhadapKarya Tulis Berbasis Web Menggunakan Natural Language Processing Dan Algoritma Knuth- Morris-Pratt,” J. Coding, Sist. Komput. Untan, vol. 04, no. 1, 2016.

K. K. Purnamasari and I. S. Suwardi, “Rule-based Part of Speech Tagger for Indonesian Language,”IOP Conf. Ser. Mater. Sci. Eng., vol. 407, no. 1, 2018, doi: 10.1088/1757-899X/407/1/012151.

L. Valatehan, “Identifikasi kalimat pemborosan menggunakan rule base reasoning,” Annu. Res. Semin., vol. 2, no. 1, pp. 205–208, 2017.

S. Saiful and B. Rahman, “Sistem Informasi Hasil Produksi Dan Penjualan Roti Pada Usaha DagangLala Roti Kendari,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 1, no. 1, pp. 53–61, 2016, doi:

51876/simtek.v1i1.8.

S. Zygiaris, Structured Query Language (SQL): Data Management. 2018.

D. M. P. P, K. K. Purnamasari, and J. D. Bandung, “INDONESIAN TEXT TRANSLATORINTODML ( DATA MANIPULATION LANGUAGE ) WITH SUB-QUERY.”

K. S. Haryana, “Penerapan Agile Development Methods Dengan Framework ScrumPadaPerancangan Perangkat Lunak Kehadiran Rapat Umum Berbasis Qr-Code,” J. Comput. Bisnis, vol 13, no. 2, pp. 70–79, 2019.

M. A. Muslim and N. A. Retno, “Implementasi Cloud Computing Menggunakan MetodePengembangan Sistem Agile,” Sci. J. Informatics, vol. 1, no. 1, pp. 29–37, 2015, doi:

15294/sji.v1i1.3639.

I. Rabbani and E. Krisnanik, “E – Commerce Perlengkapan Haji Dan Umroh Berbasis WebMenggunakan Metode Agile Software Development,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., vol. 1, no. 2, pp. 432–443, 2020.

N. Stratica, L. Kosseim, and B. C. Desai, “NLIDB Templates for Semantic Parsing,” Proc. 8thInt. Conf. Appl. Nat. Lang. to Inf. Syst., pp. 235–241, 2015.

J. Karlos, H. Sujaini, and H. Anra, “Konversi Bahasa Indonesia ke SQL ( Structured QueryLanguage ) dengan Pendekatan Mesin Penerjemah Statistik,” J. Sist. dan Teknol. Inf., vol. 3, no. 1, p. 1, 2016.

Refbacks

  • There are currently no refbacks.