Spelling Detection based on P300 Signal with Convolutional Neural Network (CNN) Algorithm

Kgs. M. Rusdiansyah Muharrom, Rifkie Primartha

Abstract

Brain Computer Interface (BCI) is a system that connects the human brain with the outside world for people who have motor skills disability problems. One form of utilization is the P300 speller which is used for character recognition or detection by classifying the P300 signal. The Convolutional Neural Network (CNN) method is a deep learning method that can be used to handle signal problems with ID-CNN. At the initial stage the data signal will be transformed and followed by a duplication process using RandomOverSampling because the amount of data in each class is not balanced. The data will be divided into training, validation, and test data. After that, a training with CNN will be conducted and followed by an evaluation to find the best model. The test results from this study are a good-fitting CNN model with an evaluation value consisting of an accuracy of 94.27%, precision of 90.64%, sensitivity / recall of 98.30%, and f-measure of 94.31%. Based on the test, the CNN method can be used and implemented in authentication detection based on the P300 signal.

Full Text:

PDF

References

R. Widadi, B. A. Widodo, and D. Zulherman, “Klasifikasi Sinyal EEG pada Sistem BCI Pergerakan Jari Manusia Menggunakan Convolutional Neural Network,” Techno.Com, vol. 19, no. 4, pp. 459–467, 2020, doi: 10.33633/tc.v19i4.4119.

Y. O. Halchenko, S. J. Hanson, and B. A. Pearlmutter, Multimodal Integration: fMRI, MRI, EEG, MEG. 2005.

S. Kundu and S. Ari, “P300 based character recognition using sparse autoencoder with ensemble of SVMs,” Biocybern. Biomed. Eng., vol. 39, no. 4, pp. 956–966, 2019, doi: 10.1016/j.bbe.2019.08.001.

N. Birbaumer and L. G. Cohen, “Brain-computer interfaces: Communication and restoration of movement in paralysis,” J. Physiol., vol. 579, no. 3, pp. 621–636, 2007, doi: 10.1113/jphysiol.2006.125633.

S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman, “1D convolutional neural networks and applications: A survey,” Mech. Syst. Signal Process., vol. 151, pp. 1–20, 2021, doi: 10.1016/j.ymssp.2020.107398.

B. Kumbara and A. Turnip, “Klasifikasi Sinyal Eeg Menggunakan Support Vector Machine ( Svm ) Untuk Deteksi Kebohongan,” vol. 3, no. 3, 2015.

W. Yunus, “Algoritma K-Nearest Neighbor Berbasis Particle Swarm Optimization Untuk Prediksi Penyakit Ginjal Kronik,” J. Tek. Elektro CosPhi, vol. 2, no. 2, pp. 51–55, 2018.

D. Suyanto, Data Mining Untuk Klasifikiasi dan Klasterisasi Data, Revisi. Bandung, 2019.

I. Wijayanto, “IDENTIFIKASI KONDISI SINYAL ELECTROENCEPHALOGRAM (EEG) YANG TERPAPAR RADIASI SINYAL GAWAI 4G LTE 1800 MHz MENGGUNAKAN LEARNING VECTOR QUANTIZATION (LVQ),” TEKTRIKA - J. Penelit. dan Pengemb. Telekomun. Kendali, Komputer, Elektr. dan Elektron., vol. 1, no. 2, pp. 138–143, 2019, doi: 10.25124/tektrika.v1i2.1746.

F. Akram, S. M. Han, and T. S. Kim, “An efficient word typing P300-BCI system using a modified T9 interface and random forest classifier,” Comput. Biol. Med., vol. 56, pp. 30–36, 2015, doi: 10.1016/j.compbiomed.2014.10.021.

A. Syukron and A. Subekti, “Penerapan Metode Random Over-Under Sampling dan Random Forest Untuk Klasifikasi Penilaian Kredit,” J. Inform., vol. 5, no. 2, pp. 175–185, 2018, doi: 10.31311/ji.v5i2.4158.

S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018.

Julpan, E. B. Nababan, and M. Zarlis, “Analisis Fungsi Aktivasi Sigmoid Biner Dan Sigmoid Bipolar Dalam Algoritma Backpropagation Pada Prediksi Kemampuan Siswa,” J. Teknovasi, vol. 02, no. 1, pp. 103–116, 2015.

Y. Bassil, “A Simulation Model for the Spiral Software Development Life Cycle,” Int. J. Eng. Technol., vol. 2, 2012.

R. A. S and M. Shalahuddin, Rekayasa Perangkat Lunak Terstruktur dan Berorientasi Objek, Revisi. Bandung: INFORMATIKA, 2018.

Refbacks

  • There are currently no refbacks.