Sign Language A-Z Alphabet Introduction American Sign Language using Support Vector Machine
Abstract
Deafness is a condition where a person's hearing cannot function
normally. As a result, these conditions affect ongoing interactions,
making it difficult to understand and convey information.
Communication problems for the deaf are handled through the
introduction of various forms of sign language, one of which is
American Sign Language. Computer Vision-based sign language
recognition often takes a long time to develop, is less accurate, and
cannot be done directly or in real-time. As a result, a solution is
needed to overcome this problem. In the system training process,
using the Support Vector Machine method to classify data and testing
is carried out using the RBF kernel function with C parameters,
namely 10, 50, and 100. The results show that the Support Vector
Machine method with a C parameter value of 100 has better
performance. This is evidenced by the increased accuracy of the RBF
C=100 kernel, which is 99%.
Full Text:
PDFReferences
G. R. Mauludi and A. Setiyadi, “Pembangunan Alat Penerjemah Huruf dan Angka Bahasa
Indonesia bagi Tunarungu dan Tunawicara menggunakan Arduino,” 2019.
I. Nadia, “Jurnal Mahasiswa Universitas Muhammadiyah Ponorogo,” Jurnal Mahasiswa
Universitas Muhammadiyah Ponorogo, 2018.
M. E. Al Rivan, H. Irsyad, K. Kevin, and A. T. Narta, “Pengenalan Alfabet American Sign
Language Menggunakan K-Nearest Neighbors Dengan Ekstraksi Fitur Histogram Of Oriented
Gradients,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 5, no. 3, Jan. 2020, doi:
28932/jutisi.v5i3.1936.
A. Rozani, “PENERAPAN METODE JARINGAN SYARAF TIRUAN PADA APLIKASI
PENGENALAN BAHASA ISYARAT ABJAD JARI,” 2017.
P. A. Octaviani, Y. Wilandari, and D. Ispriyanti, “PENERAPAN METODE KLASIFIKASI
SUPPORT VECTOR MACHINE (SVM) PADA DATA AKREDITASI SEKOLAH DASAR
(SD) DI KABUPATEN MAGELANG,” vol. 3, no. 4, pp. 811–820, 2014, [Online]. Available:
http://ejournal-s1.undip.ac.id/index.php/gaussian
T. M. Kadarina et al, “Pengenalan Bahasa Pemrograman Python menggunakan Aplikasi Games
untuk Siswa/i di Wilayah Kembangan Utara,” 2019. [Online]. Available:
https://codecombat.com/.
I. Monika Parapat and M. Tanzil Furqon, “Penerapan Metode Support Vector Machine (SVM)
Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak,” 2018. [Online]. Available: http://jptiik.ub.ac.id
A. R. Shetty, F. B. Ahmed, and V. M. Naik, “CKD Prediction Using Data Mining Technique
As SVM And KNN With Pycharm,” International Research Journal of Engineering and
Technology, p. 4399, 2008, [Online]. Available: www.irjet.net
S. Wulan Purnami and W. wibowo, “PARAMETER OPTIMIZATION OF SUPPORT
VECTOR MACHINE USING TAGUCHI APPROACH FOR HIGH-DIMENSIONAL
DATA,” 2017.
R. I. Borman, B. Priopradono, and A. R. Syah, Klasifikasi Objek Kode Tangan pada
Pengenalan Isyarat Alphabet Bahasa Isyarat Indonesia (Bisindo). 2017.
Refbacks
- There are currently no refbacks.