Automatic Clustering and Fuzzy Logical Relationship to Predict the Volume of Indonesia Natural Rubber Export
Abstract
Natural rubber is one of the pillars of Indonesia's export commodities. However, over the last few years, the export value of natural rubber has decreased due to an oversupply of this commodity in the global market. To overcome this problem, it is possible to predict the volume of Indonesia natural rubber exports. Predicted values can also help the government to compile market intelligence for natural rubber commodities periodically. In this study, the prediction of the export volume of natural rubber was carried out using the Automatic Clustering as an interval maker in the Fuzzy Time Series or usually called Automatic Clustering and Fuzzy Logical Relationship (ACFLR). The data used is 51 data per year from 1970 to 2020. The purpose of this study is to predict the volume of Indonesia natural rubber exports and compare the prediction results between the Automatic Clustering and Fuzzy Logical Relationship (ACFLR) and Chen's Fuzzy Time Series. The results showed that there was a significant difference between the two methods, ACFLR got 0.5316% MAPE with and Chen's Fuzzy Time Series model got 8.009%. Show that the ACFLR method performs better than the pure Fuzzy Time Series in predicting volume of Indonesia natural rubber exports.
Full Text:
PDFReferences
Kertayuga, D. (2021). Prediksi Nilai Ekspor Impor Migas dan Non-Migas Indonesia Menggunakan Extreme Learning Machine (ELM). Edy Santoso, S. Si., M. Kom. dan Nurul Hidayat, S. Pd., M. Sc (Doctoral dissertation, Universitas Brawijaya).
Floranica, P.B., B2A219051 (2020) Prediksi Nilai Ekspor Migas dan Non-Migas di Jawa Timur dengan Artificial Neural Network Conjugate Gradient Fletcher-Reeves. Undergraduate thesis, Muhammadiyah University, Semarang.
Lindung, L., & Jamil, A. S. (2018). Posisi Daya Saing Dan Tingkat Konsentrasi Pasar Ekspor Karet Alam Indonesia Di Pasar Global. Jurnal AGRISEP: Kajian Masalah Sosial Ekonomi Pertanian Dan Agribisnis, 17(2), 119-128.
Kementerian Pertanian. 2019. Statistik Perkebunan Unggulan Nasional 2019 – 2021. Direktorat Jenderal Perkebunan Kementerian Pertanian
Perdana, R. P. (2020, July). Kinerja Ekonomi Karet dan Strategi Pengembangan Hilirisasinya di Indonesia. In Forum penelitian Agro Ekonomi (Vol. 37, No. 1, pp. 25-39).
Kementerian Perdagangan. 2019. Keputusan Menteri Perdagangan Republik Indonesia Nomor 779 Tahun 2019
Atika, S., & Afifuddin, S. (2015). Analisis Prospek Ekspor Karet Indonesia ke Jepang. Jurnal Ekonomi dan Keuangan, 3(1), 14835.
Al Mahkya, D. (2016). Prediksi Nilai Ekspor Jawa Tengah Menggunakan Pendekatan Hierarchical Time Series (Doctoral dissertation, Institut Teknologi Sepuluh Nopember).
Nugroho, K. (2016). Model Analisis Prediksi Menggunakan Metode Fuzzy Time Series. Infokam, 12(1).
Chen, S. M., Wang, N. Y., & Pan, J. S. (2009). Forecasting Enrollments Using Automatic Clustering Techniques and Fuzzy Logical Relationships. Expert Systems with Applications, 36(8), 11070–11076. https://doi.org/10.1016/j.eswa.2009.02.085
Huarng, K. (2001). Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy sets and systems, 123(3), 387-394.
Wahyudy, H. A. (2018). Perkembangan Ekspor Karet Alam Indonesia. Dinamika Pertanian, 34(2), 87-94.
Kohjiya, S. (2015). NATURAL RUBBER. Smithers Rapra.
Junaidi. 2019. Jenis Tanaman Penghasil Karet dan Produk yang Dihasilkan. https://penasultra.com
Anonim, 2008. Panduan Lengkap Karet. PENEBAR SWADAYA. Bogor
Priyadarshan, P. M. (2011). BIOLOGY OF HEVEA RUBBER (PP. 1-6). Wallingford, UK: CABI.
Dean, W. (2002). Brazil and The Struggle for Rubber. Department of history New York University.
Dr.M. Subandi, Ir., M. (2011). Budidaya Tanaman Perkebunan Unggal. In Jakarta: Penebar Swadaya.
Kementerian Pertanian. (2021). SEJARAH KARET. http://museum.pertanian.go.id/berita/sejarah-karet-.9568256
Soleh, A. (2016). Analisis Ekspor dan Produksi Karet di Indonesia (Aplikasi Model Lag Terdistribusi). EKOMBIS REVIEW: Jurnal Ilmiah Ekonomi dan Bisnis, 4(1).
Chen, S. M. (1996). Forecasting Enrollments Based on Fuzzy Time Series. Fuzzy sets and systems, 81(3), 311-319.
Hidayatullah, M. A. (2015). Model Hibrida Arima dan Fuzzy Time Series untuk Meramalkan Data Berpola Trend.
Fauziah, N., Wahyuningsih, S., & Nasution, Y. N. (2016). Peramalan Mengunakan Fuzzy Time Series Chen (Studi Kasus: Curah Hujan Kota Samarinda). Jurnal Statistika Universitas Muhammadiyah Semarang, 4(2).
Sitohang, S. (2018). Analisis Peramalan Harga Emas dengan Metode Automatic Clustering And Fuzzy Logic Relationship. Journal Information System Development (ISD), 3(2).
Van Tinh, N. (2016). A Forecasting Method Based on Combining Automatic Clustering Technique and Fuzzy Relationship Groups.
Gao, R.; Duru, O. (2020). Parsimonious Fuzzy Time Series Modelling. Expert Systems with Applications, 156(), 113447–.
Panigrahi, S., & Behera, H. S. (2020). FUZZY TIME SERIES FORECASTING: A SURVEY. Computational Intelligence in Data Mining, 641-651.
Abdullah, L., & Ling, C. Y. (2012). Intervals in Fuzzy Time Series Model Preliminary Investigation for Composite Index Forecasting. ARPN Journal of Systems and Software, 2(1), 7-11.
Kamal S. Selim, Gihan A. Elanany. (2013). "A New Method for Short Multivariate Fuzzy Time Series Based on Genetic Algorithm and Fuzzy Clustering", Advances in Fuzzy Systems, vol. 2013, Article ID 494239, 10 pages. https://doi.org/10.1155/2013/494239
Refbacks
- There are currently no refbacks.