CLASSIFICATION METHODS ON SENTIMENT ANALYSIS OF TOURISTS ON AIRLINES IN TWITTER

Elza Fitriana Saraswita, Dian Palupi Rini, abdiansah abdiansah

Abstract

Sentiment analysis is one of the knowledge to find the opinions of society towards a topic of discussion particular. Text mining is the science that many performed by individuals or companies to improve performance and fix complaints public against the services or brand trademarks that exist in the world of business. One of them is business flight or airline flights. One of them is public complaints against certain airlines posted on twitter. It is certainly going to greatly affect the airline 's own because , media social is one of the means of advertising and trade are extensive. Machine learning methods such as Logistics Regression, Kneighbors Classifier, Support Vector Classifier (SVC), Decision Tree Classifier, Random Forest Classifier, and Gaussian. Several classification methods are used to compare the performance of each method to see the best results.

Full Text:

PDF

References

N. D. Putranti and E. Winarko, “Analisis Sentimen Twitter untuk Teks Berbahasa Indonesia

dengan Maximum Entropy dan Support Vector Machine,” IJCCS (Indonesian J. Comput.

Cybern. Syst., vol. 8, no. 1, p. 91, 2014, doi: 10.22146/ijccs.3499.

Ariyanti, “No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共

分散構造分析Title,” vol. 42, no. 1, pp. 1–10, 2016.

G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,” INTEGER

J. Inf. Technol., vol. 1, no. 1, pp. 32–41, 2017, [Online]. Available:

https://www.researchgate.net/profile/Ghulam_Buntoro/publication/316617194_Analisis_Senti

men_Calon_Gubernur_DKI_Jakarta_2017_Di_Twitter/links/5907eee44585152d2e9ff992/Ana

lisis-Sentimen-Calon-Gubernur-DKI-Jakarta-2017-Di-Twitter.pdf.

A. R. Naradhipa and A. Purwarianti, “Sentiment classification for Indonesian message in

social media,” Proc. 2011 Int. Conf. Electr. Eng. Informatics, ICEEI 2011, 2011, doi:

1109/ICEEI.2011.6021696.

A. F. Hidayatullah, “Language tweet characteristics of Indonesian citizens,” Proc. 2015 Int.

Conf. Sci. Technol. TICST 2015, pp. 397–401, 2015, doi: 10.1109/TICST.2015.7369393.

A. Alamsyah, W. Rahmah, and H. Irawan, “Sentiment analysis based on appraisal theory for

marketing intelligence in Indonesia’s mobile phone market,” J. Theor. Appl. Inf. Technol., vol.

, no. 2, pp. 335–340, 2015.

D. T. Alamanda, A. Ramdhani, I. Kania, W. Susilawati, and E. S. Hadi, “Sentiment Analysis

Using Text Mining of Indonesia Tourism Reviews via Social Media,” Int. J. Humanit. Arts

Soc. Sci., vol. 5, no. 2, pp. 72–82, 2019, doi: 10.20469/ijhss.5.10004-2.

G. A. Buntoro, T. B. Adji, and A. E. Purnamasari, “Sentiment Analysis Twitter dengan

Kombinasi Lexicon Based dan Double Propagation,” Citee, no. June, pp. 39–43, 2014.

P. S. M. Suryani, L. Linawati, and K. O. Saputra, “Penggunaan Metode Naïve Bayes Classifier

pada Analisis Sentimen Facebook Berbahasa Indonesia,” Maj. Ilm. Teknol. Elektro, vol. 18,

no. 1, p. 145, 2019, doi: 10.24843/mite.2019.v18i01.p22.

E. Susilawati, “Public Services Satisfaction Based on Sentiment Analysis.,” 2016 Int. Conf.

Inf. Technol. Syst. Innov., no. ISBN : 978-1-5090-2449-0., 2016.

M. A. Fauzi, R. F. N. Firmansyah, and T. Afirianto, “Improving sentiment analysis of short

informal Indonesian product reviews using synonym based feature expansion,” Telkomnika

(Telecommunication Comput. Electron. Control., vol. 16, no. 3, pp. 1345–1350, 2018, doi:

12928/TELKOMNIKA.v16i3.7751.

Refbacks

  • There are currently no refbacks.