Fisheries Harvest Prediction using Genetic Algorithm Optimized of Gated Recurrent Unit
Abstract
Indonesia is a maritime country with most of the population living near water areas. Water products are a common commodity often consumed cheaply, and food is therefore one of the primary human needs. Fishery harvest predictions are needed to control prices, prepare seeds, and ensure stable sales and consumption. The reason for choosing GRU for this prediction is that classical methods, commonly used in econometrics or time series analysis, were previously prevalent. GRU requires fewer operations than LSTM. Instead of training with an optimization algorithm relying on backpropagation and gradients, metaheuristic optimization in the form of a GA is used. GA does not require gradient information and is expected to avoid local optima. The total average MSE obtained is 9.55%.
Full Text:
PDFReferences
Arfianti, Unix Izyah, Novitasari, Dian Candra Rini, Widodo, Nanang, Hafiyusholeh, Moh., dan Utami, Wika Dianita. 2021. Sunspot Number Prediction Using Gated Recurrent Unit (GRU) Algorithm. IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 15 (2): 141-152.
Bai, Chenyao. 2020. AGA-GRU: An Optimized GRU Neural Network Model Based on Adaptive Genetic Algorithm. Journal of Physics: Conference Series 1651 (1): 012146.
Bai, Chenyao. 2020. AGA-LSTM: An Optimized LSTM Neural Network Model Based on Adaptive Genetic Algorithm. Journal of Physics: Conference Series 1570 (1): 012011.
Bansal, Priti, Lamba, Risabh, Jain, Vaibhav, Jain, Tanmay, Shokeen, Sanchit, Kumar, Sumit, Singh, Pradeep Kumar, dan Khan, Baseem. 2022. GGA-MLP: A Greedy Genetic Algorithm to Optimize Weights and Biases in Multilayer Perceptron. Dalam Yuvaraja Teekaraman. Contrast Media & Molecular Imaging 2020 (4): 1 - 14.
Blank, Julian dan Deb, Kalyanmoy. 2020. pymoo: Multi-Objective Optimization in Python. IEEE Access 8: 89497 - 89509.
Cho, Kyunghyun, van Merrienboer, Bart, Bahdanau, DZmitry, Bougares, Fethi, Schwenk, Holger, Bengio, Yoshua. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. Oleh Association for Computational Linguistics pada arXiv - Universitas Cornell (2014), https://arxiv.org/abs/1406.1078.
Deb, Kalyanmoy dan Agrawal, Samir. 1999. Understanding Interactions Among Genetic Algorithm Parameters. Dalam Morgan Kauffman. Foundations of Genetic Algorithms 5 (5): 265 - 286.
de Vel, O., Hubczenko, D., Kim, J., Montague, P., Xiang, Y., Phung, D., Zhang, J., Murray, T., Le, T., Wen, S., Liu, S., Nguyen, V., Lin, G., Nguyen, K., Le, T., Nguyen, T., Nock, R., and Qu, L. 2019. Deep Learning for Cyber Vulnerability Discovery: NGTF Project Scoping Study. Divisi Peperangan Siber dan Elektronik, Pemerintahan Australia, Departemen Pertahanan, Sains dan Teknologi, Edinburgh, Australia Selatan, Australia.
Diana. 2018. Metode & Aplikasi Sistem Pendukung Keputusan. Penerbit Deepublish, Yogyakarta, Indonesia.
Eko, Yuli. 2009. Ekonomi untuk Kelas X SMA dan MA. Penerbit CV Mitra Media Pustaka, Indonesia.
Gad, Ahmed Fawzy. 2021. PyGAD: An Intuitive Genetic Algorithm Python Library. arXiv - Universitas Cornell (2021), https://arxiv.org/abs/2106.06158.
Galván, Edgar dan Mooney, Peter. 2020. Neuroevolution in Deep Neural Networks: Current Trends and Future Challenges. IEEE Transactions on Artificial Intelligence 2 (6): 476 - 493.
Gregory, Morse dan Stanley, Kenneth O. 2016. Simple Evolutionary Optimization Can Rival Stochastic Gradient Descent in Neural Networks. Proceedings of the Genetic and Evolutionary Computation Conference 2016 (GECCO '16). Association for Computing Machinery, New York, NY, USA, 2016. Hal. 477 – 484.
Heryadi, Yaya dan Sonata, Ilvico. 2022. Dasar-dasar Graph Machine Learning dan Implementasinya Menggunakan Bahasa Python. Penerbit Gava Media, Yogyakarta, Indonesia
Heryadi, Yaya dan Wahyono, Teguh. 2021. Dasar-dasar Deep Learning dan Implementasinya. Penerbit Gava Media, Yogyakarta, Indonesia.
Holland, John Henry. 1975. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor, Michigan, Amerika Serikat.
Jayaraj, V. dan Raman, N. Saravana. 2016. A Genetic Algorithm Optimized MultI-layer Perceptron for Software Defect Prediction. International Journal of Advanced Technology in Engineering and Science 4 (2): 132 - 141.
Khadka, Shauharda, Chung, Jen Jen, dan Tumer Kagan. 2019. Neuroevolution of a Modular Memory-Augmented Neural Network for Deep Memory Problem. Evolutionary computation 27 (4): 639-664.
Köpüklü, Okan, Babaee, Maryam, Hörmann, Stefan, Rigoll, Gerhard. 2019. Convolutional Neural Networks with Layer Reuse. arXiv - Universitas Cornell (2019), https://arxiv.org/abs/1901.09615.
Lambert, John. 2014. Stacked RNNs for Encoder-Decoder Networks: Accurate Machine Understanding of Images. Departemen Ilmu Komputer, Universitas Stanford.
Mahajan, Richa dan Kaur, Gaganpreet. 2013. Neural Networks using Genetic Algorithms. International Journal of Computer Applications (0975-8887) Volume 77 (14): 6 - 11.
Moisa, Trandafir, Ontanu, Dan, dan Dediu, Adrian Horia. 2001. Speech Synthesis Using Neural Networks Trained by an Evolutionary Algorithm. Dalam Alexandrov, Vassil N. dkk. Computational Science - ICCS 2001. San Francisco, CA, USA, 28 - 30 Mei 2001. Hal. 419 - 428.
Muis, Saludin. 2017. Jaringan Syaraf Tiruan: Sistem Kecerdasan Tiruan dengan Kemampuan Belajar dan Adaptasi. Teknosain, Sleman, Indonesia.
Munir, Rinaldi. 2004. Pengolahan Citra Digital dengan Pendekatan Algoritmik. Penerbit Informatika, Bandung, Indonesia.
Munir, Rinaldi. 2015. Metode Numerik (Revisi Keempat). Penerbit Informatika, Bandung, Indonesia.
Munawar. 2018. Analisis Perancangan Sistem Berorientasi Objek dengan UML (Unified Modeling Language) (Halaman 61). Penerbit Informatika, Bandung, Indonesia.
Noh, Jiseong, Park, Hyun-Ji, Kim, Jong, dan Hwang, Seung-June. 2020. Gated Recurrent Unit with Genetic Algorithm for Product Demand Forecasting in Supply Chain Management. Mathematics 8 (4): 565.
Pavlidis, Nicos G., Tasoulis, O.K., Plagianakos, Vassilis, Nikiforidis, George, dan Vrahatis, Michael. 2005. Spiking neural network training using evolutionary algorithms. IEEE International Joint Conference 2005 (IJCNN '05). 2005 IEEE International Joint Conference on Neural Networks. Montreal, QC, Kanada, 31 Juli - 4 Agustus 2005. Vol. 4 Hal. 2190 - 2194.
Primartha, Rifkie. 2018. Belajar Machine Learning (Teori Dan Praktik). Penerbit Informatika, Bandung, Indonesia.
Primartha, Rifkie dan Wahono, Romi Satria. 2021. Algoritma Machine Learning. Penerbit Informatika, Bandung, Indonesia.
Purnama, Bedy. 2019. Pengantar Machine Learning: Konsep dan Praktikum dengan Contoh Latihan Berbasis R dan Python. Penerbit Informatika, Bandung, Indonesia.
Rao, Ravipudi Venkata. 2020. Rao algorithms: Three metaphor-less simple algorithms for solving optimization problems. International Journal of Industrial Engineering Computations: 107 - 130.
Rao, Ravipudi Venkata. 2016. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations 7 (1): 19-34.
Rao, Ravipudi Venkata, Rai, Dhiraj, Ramkumar, Janakarajan, Balic, J.. 2016. A new multi-objective Jaya algorithm for optimization of modern machining processes. Advances in Production Engineering & Management 11 (4): 271-286.
Robandi, Imam. 2019. Artificial Intelligence: Mengupas Rekayasa Kecerdasan Tiruan. Penerbit Andi, Yogyakarta, Indonesia.
S., Rosa A. dan Shalahuddin, M.. 2019. Rekayasa Perangkat Lunak Terstruktur dan Berorientasi Objek (Edisi Kedua) (Halaman 18, 26, dan 38). Penerbit Informatika, Bandung, Indonesia.
Seiffert, Udo. 2001. Multiple Layer Perceptron Training Using Genetic Algorithm. 9th European Symposium of Artificial Neural Network 2001 (ESANN'2001). Bruges, Belgia, 25 - 27 April 2001. Hal. 160 - 164.
Shuai, Minwei dan Tian, Huixin. 2019. Long Short Term Memory based on Differential Evolution in Passenger Flow Forecasting. Journal of Simulation 7 (1).
Such, Felipe Petroski, Madhavan, Vashisht, Conti, Edoardo, Lehman, Joel, Stanley, Kenneth O., dan Clune, Jeff. 2017. Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning. Oleh Uber AI Labs pada arXiv - Universitas Cornell (2018), https://arxiv.org/abs/1712.06567.
Suprapto. Claudia Millennia. 2023. Prediksi Hasil Panen Budidaya Ikan Lele Dari Mitra Panen Menggunakan Algoritma Support Vector Regression (Studi Kasus : PT. Adma Digital Solusi). Skripsi, UPN Veteran Jawa Timur.
Suyanto. 2008. Evolutionary Computation: Komputasi Berbasis "Evolusi" dan "Genetika". Penerbit Informatika, Bandung, Indonesia.
Suyanto. 2008. Soft Computing: Membangun Mesin Ber-IQ Tinggi. Penerbit Informatika, Bandung, Indonesia.
Suyanto. 2014. Artificial Intelligence: Searching - Reasoning - Planning - Learning. Penerbit Informatika, Bandung, Indonesia.
Suyanto. 2017. Swarm Intelligence: Komputasi Modern untuk Optimasi dan Big Data Mining. Penerbit Informatika, Bandung, Indonesia.
Suyanto, Arifianto, Anditya, Rismala, Rita, dan Sunyoto, Andi. 2020. Evolutionary Machine Learning: Pembelajaran Mesin Otonom Berbasis Komputasi Evolusioner. Penerbit Informatika, Bandung, Indonesia.
Suyanto, Ramadhani, Nur Kurniawan, dan Mandala, Satria. 2019. Deep Learning: Modernisasi Machine Learning untuk Big Data. Penerbit Informatika, Bandung, Indonesia.
Tao, Peiying, Sun, Zhe, dan Sun, Zhixin. 2018. An Improved Intrusion Detection Algorithm Based on GA and SVM. IEEE Access 6: 13624-13631.
Toklu, Nihat Engin, Atkinson, Timothy, Micka, Vojtěch, Liskowski, Paweł, dan Srivastava, Rupesh Kumar. 2023. EvoTorch: Scalable Evolutionary Computation in Python. arXiv - Universitas Cornell (2023), https://arxiv.org/abs/2302.12600.
Whitelam, Stephen, Selin, Viktor, Park, Sang-Won, dan Tamblyn, Isaac. 2020. Correspondence between neuroevolution and gradient descent. arXiv - Universitas Cornell (2020), https://arxiv.org/abs/2008.06643.
Zhang, Aston, Lipton, Zachary C., Li, Mu, dan Smola, Alexander J.. 2023. Dive Into Deep Learning. Buku cetak elektronik, diunduh di http://www.d2l.ai pada 24 Juni 2023.
Refbacks
- There are currently no refbacks.